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Abstract
Propensity Score Analysis (PSA) was introduced by Rosenbaum &
Rubin (Biometrika, 1983). Since then PSA has become one of the most
studied and frequently used new methods in statistics. Hundreds of
papers have been published, covering philosophy, statistical theory
and a wide variety of applications (health, medicine, behavioral
sciences, biology, education, economics, etc). Here | focus on
the background and logical foundations of PSA, as well as the key
qguestions and basic forms of the analytic method. Two data sets are
used to illustrate how the method works, how results might
effectively be interpreted, and what some of the key ancillary
guestions or issues are; several novel graphical methods are
demonstrated using freely available software in the form of R.

*Talk on 4/28/10 to Albany Chapter of the American Statistical Association



PSA owes its central rationale to the logic that underpins
the analysis of true experiments. In true experiments, units are
randomly allocated to the (two) treatment groups at the outset of
an experiment, that is, before the treatments begin. In the words
of Fisher, randomization is the ‘reasoned basis for causal inference’
in experiments. Its role is to ensure that units allocated to each
treatment group do not differ systematically from one another on
any covariate. Randomization supports causal interpretations: If
the one group scores systematically higher than the other, then,
thanks to randomized allocation of units to treatments, this finding
can (with qualifications*) be attributed to the treatments, and not
other factors. *Three caveats are in order: 1. Randomization can
go awry in practice, particularly when samples are not large;
2. Much depends on the details of how experiments were run; &
3. To say that ‘treatments caused the differences’ is not to say that
one knows what feature(s) of the treatments had the noted effects.
We study the ‘effects of causes,” not ‘causes of effects’.



Observational studies entail comparison of groups
that were not formed using randomization; this means
that observational studies carry with them a greater
likelihood for Selection Bias (SB). SB refers to systematic
covariate differences between groups being compared,
differences that can confound attempts to interpret
treatment differences when they are found. SB is the
central problem that propensity score analysis aims to
reduce, if not eliminate (usually -- but not always -- in the
context of observational studies).

Three people have written key articles and books
that underpin propensity score methods: William Cochran,
his student Donald Rubin, and then his student, Paul
Rosenbaum. A review of one of Cochran’s reports, done 40
years ago is worth brief examination.



Cochran (1968) studied death rates of smokers
and non-smokers. It had been found, when using
unstratified data, that death rates for smokers and non-
smokers were nearly identical (evidence that many
smokers and manufacturers of tobacco products found
greatly to their liking). But Cochran decided to sort both
smokers and non-smokers by age. Following age-based
stratification he re-calculated death rates, only to find
that they were on average 40 - 50% higher for smokers
than non-smokers -- and this was for very large samples.
Results of this kind represent early versions of what now
can be seen as propensity score analysis (a term that
gave nearly a million hits in a recent Google search!).



Note that when there is only one confounding variable
(such as age, in Cochran’s case) in an observational study then
mere stratification (of subgrouping) on that variable is likely to
work well when comparing two (or more) treatments with one
another. But this prospect is most unrealistic; in general practice
numerous covariates can confound interpretations, and for many
years analysts found it most difficult to account for confounding
effects. The key breakthrough came when Rosenbaum and Rubin
(1983) showed how to produce a single variable, a propensity
score, whose use could greatly simplify treatment comparisons in
observational studies. They noted that conditions may exist where
treatment assignment Z (binary) is independent of potential
outcomes Y, & Y,, conditional on observed baseline covariates, X.
That is, (Y(1), Y(0)) .L Z|X, if 0 < P(Z=1|X) < 1. This condition was
defined as strong ignorability, which essentially means that all
covariates that effect treatment assignment are included in X.



These authors then went on to define the propensity score
e(X) (a scalar function of X) as the probability of treatment
assignment, conditional on observed baseline covariates:

e(X)=e,=Pr(Z,=1 [ X).
They then demonstrated that the propensity score is a
balancing score, meaning that, conditional on the propensity
score, the distribution of measured baseline covariates is similar
between treated & untreated (or treatment and control)
subjects. This means that (Y(1), Y(0)) _L Z|e(X), an analog of the
preceding expression. In effect we see that e(X) summarizes the
Information in X. Again, they assume that strong ignorability holds.

In practice, the preceding leads to an interest in estimating
the (scalar) propensity score from the (vector) of (appropriately
chosen) covariates, say X, so that comparisons of treatment
and control response score distributions can be made, condi-
tional on an estimated propensity score. The most common
method for estimating e(X) entails use of logistic regression (LR).



In practice, there are two main stages or Phases of a
propensity score analysis. In Phase |, pre-treatment covariates are
used to construct a single variable, a propensity score, that
summarizes key differences among units (or respondents) with
respect to the two™ treatments being compared.

These P-scores are then used in Phase Il in two main ways:
Units in the treatment and control groups are either matched or
stratified (sorted), and then the two groups are compared on one
or more outcome measures, conditional on these propensity
scores. For matching, the usual approach begins from selection of
a treated unit (individual) and tries to match that unit with a
control unit with a similar propensity score; in the case of
stratification, responses of units are compared within propensity-
based strata. Both methods are illustrated below.

*Except for some recent work, nearly all PSA’s to date have
focused on two group comparisons.



Data shown in the next slide* derive from an observational study
by Morten, et. al (1982, Amer. Jour. Epidemiology, p. 549 ff); this entails
a relatively simple form of propensity score analysis.

Children of parents who had worked in a factory where lead was
used in making batteries were matched by age and neighborhood with
children whose parents did not work in lead-related industries. Whole
blood was assessed for lead content to provide responses. Results shown
compare Exposed with Control Children in what can be seen as a paired
samples design. Conventional dependent sample analysis shows that the
(95%) C.I. for the population mean difference is far from zero. The mean
of the difference scores is 5.78, and the results support the interpretation
that parents’ lead-related occupations tend to influence how much lead is

found in their children's blood.

* This plot is called a Propensity Score Assessment Plot and is produced by the function
granova.ds in R package granova (Pruzek & Helmreich, 2007). Note that the heavy
black line on the diagonal corresponds to X =Y, so if X > Y its point lies below the
identity diagonal. Parallel projections to the lower left line segment show the distribution
of difference scores corresponding to the pairs; the red dashed line shows the average
difference score, and the green line segment shows the 95% C.1I.
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The graphic shows more, however. Note the wide dispersion of lead
measurements for Exposed children in comparison with their Control
counterparts. A follow-up to the main study showed that parental hygiene
differed largely across the battery-factory parents, and the variation in
hygiene in large measure served to account for the dispersion of their
children’s lead measurements (a finding made possible because of the
authors’ close attention to detail in their data collection). Although
it is not certain that Control & Exposed children did not differ in
other ways (than age and neighborhood of residence) these data seem
rather persuasive in showing that working in a lead-based battery factory
puts the workers’ children at major risk for high levels of blood lead, except
when personal hygiene of the worker was ‘generally satisfactory’.

Rosenbaum (2002), who discusses this example in detail, uses a
sensitivity analysis to show that the hidden bias would have to be
extreme to explain away differences this large. Sensitivity analyses
can be essential to a wrap-up of a PSA study, but they are often
not completed. In summary, these observational data provide useful
evidence to support causal conclusions about the specified treatments.



Consider next, estimation of propensity scores for a medical study
using data on 996 initial Percutaneous Coronary Interventions
(PCls) performed in 1997 at the Lindner Center, Christ Hospital,
Cincinnati. The goal was to assess the effect of a drug ‘abcix’.

Description: Data from an observational study of 996 patients
receiving a PCl at Ohio Heart Health in 1997 and followed for at
least 6 months by the staff of the Lindner Center. This is a landmark
dataset in the literature on propensity score adjustment for
treatment selection bias due to recent practice of evidence based
medicine; patients receiving abciximab tended to be more severely
diseased than those who did not receive a cascade blocker.

The binary variable abcix indicates control (0) or treatment (1).
Logistic regression was used initially to estimate propensity scores.



The next two slides show two graphics. In the first,
(densities) for both of the Lindner treatment groups, where
the Counts were 298 for Control (0), and 698 for Treatment.
Five strata are also identified by vertical lines in the plot. The
loess plot, the second figure, is particularly informative, as it
shows the (non-linear) regression lines for predicting costs
(log metric) of the two treatments. Interpretation of the
loess graphic will be provided after it’s presentation.
Because the cost variable was strongly positively skewed,
the response variable analysis was done in log metric, i.e.
log(cost).
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The preceding graphic shows all 996 data points colored to
correspond with the treatment/control designations. Note that the loess
(non-linear) regression curve for abcix = 1 lies above the curve for the
control group across nearly the full range of the propensity scores. This
indicates that costs of treatments (this being a proxy for health
problems) for abcix were almost universally higher than for their control
counterparts after adjusting for all covariate differences using LR-based
P-scores; 95% C.I.=(.05,.21) in Log metric. Summary results for strata
(noted by vertical lines in the preceding plot) are shown in the table
below, as well as in the graphic on the next page. (Alas, the x- and y-axis
labels are reversed; they should be x: mean.1, y: mean.0.)
counts.0 counts.1 means.0 means.1 diff.means

97 107 9.36 9.48 0.12

/3 122 9.37 9.55 0.18

62 138 9.39 9.60 0.21

48 151 9.47 9.62 0.15

18 180 9.60 9.60 0.00
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Summary for PSA of Lindner PCI Data (only parts of which were seen here)
(The lindner data are available in the USPS & the PSAgraphics (R) packages.)

Before adjustment (n=966: 298 control & 698 treatment) (not shown) 5 out of 7
covariates, including ejecfrac, Veslpro, acutemi, daibetic and stent showed
notable mean differences between treatment and control.

For the LR-based method, the loess regression plot shows the full range of
adjusted effect results; this response variable analysis produced a 95% Cl
that did not span zero, showing significantly higher overall costs for abcix
after PS adjustment. Next, five strata were defined. Treatment effects
differed somewhat across strata, but the effects again showed greater costs
overall for abcix than for control after adjustments. Strata 1 - 4 showed the
strongest treatment effects while stratum 5 showed a change of sign in the
mean log(cost) difference, but essentially a null treatment effect.

For the classification tree stratification method (not shown), 6 strata were
found and concordance with the preceding treatment effects across
propensity score levels were observed. The log(cost) analysis yielded a
confidence interval that did not to span zero showing that there were
statistical differences in costs for the treatment and control groups, results
that were consistent with those found using LR.

The graphical-visualization functions (in R package PSAgraphics) for PSA
provided helpful images of the sizes and direction of treatment effects, and
clarified the differences found for the different PSA methods. In general,
supposing that the available covariates accounted for most of the selection
bias, the results might be taken to imply causal effects of increased abcix
costs compared to the control after P-score adjustments.



The foregoing are only two examples. Others are easy to
imagine: Comparing two behavioral patterns with one another, two
diets or two exercise plans; or two food supplement schedules.

In many situations it is either unethical or impractical to use
randomization to allocate individuals to treatment and control
groups (or simply to the treatments). In such cases, given that an
appropriate or ‘reasonable’ set of covariates can be observed for all
units, propensity score methods can facilitate comparison of
treatments in a way that removes the notable effects of selection
bias.

The key requirement in such observational studies is the
selection of covariates that are responsible for most of the
selection bias, and the use effective numerical or graphical
(statistical) methods to make comparisons with respect to
appropriate outcome measures.



