
 1

 
 
 
 

Applications and graphics for propensity score analysis* 
 
 

Robert M. Pruzek 

State University of New York at Albany 

 

J.E. Helmreich 

Marist College 

 

July 30, 2004 

 

 

 

 

 

____________________________________________________________ 
*Requests for reprints and information concerning software should be addressed to R.M. 
Pruzek, Department of Educational and Counseling Psychology, 1400 Washington 
Aven., State University of New York at Albany, Albany, N.Y. 12222. 

 
 
 
 
 
 
 
 
 
 
 



 2

 
 

Applications and graphics for propensity score analysis 
 
 
 

Abstract 
 
 
 

Methods for propensity score analysis (PSA) originated with Rosenbaum and 

Rubin (1983), as vehicles to sharpen and clarify treatment group comparisons in 

observational studies.  Although highly recommended by many statisticians, and applied 

often in medical sciences, PSA has seen relatively few applications in the social and 

behavioral sciences.  This paper aims to facilitate sound PSA applications in 

psychological and other social sciences, and to emphasize the role visualization can play 

in such contexts.  Numerous references to the expanding PSA literature are also provided.  
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Applications and graphics for propensity score analysis 
 
 

Introduction 
 

It has become a broadly shared opinion among those who have studied propensity  
 

score analysis (PSA) that it can sharpen and clarify analyses of treatment effects in many 

applied sciences, particularly in contexts where randomization is not feasible. The key 

reference for PSA is Rosenbaum and Rubin (1983), but by now several hundred articles, 

including tutorials (D�Agostino, 1998), and a major book (Rosenbaum, 2002) have 

focused on this topic.  Despite its promise, however, PSA has rarely been applied in most 

psychological, social and educational sciences; moreover, students in these fields seldom 

learn even the rudiments of this new class of methods. The relative lack of PSA 

applications means that many opportunities are missed since social, behavioral and 

educational program evaluations routinely use observational data to compare treatments. 

For example, clinical therapies and behavioral regimens are often compared outside of 

randomized settings. Also, intact treatment groups are frequently compared, such as 

schools or classrooms using various educational programs, curricula and instructional 

methods. 

Our main aim in this paper is to use real data to introduce and demonstrate the 

central ideas of PSA, with a focus on graphics to aid understanding and interpretation of 

the methods.  Some of the graphical methods that we illustrate are new; others are not 

novel, but nonetheless are rarely used.  We discuss how and why PSA can in certain 

situations facilitate getting clear answers to key questions that often drive treatment 

comparisons, as well as how effectively to pursue questions that arise in analyses. We 

also compare and contrast two methods for estimating propensity scores, showing each 



 4

may lead to different insights into the data at hand. Before describing PSA methods, 

however, it may be useful to consider some elements that distinguish experiments from 

observational studies. 

In the first section below, we introduce and discuss the two main phases of PSA.  

The second section discusses briefly the role PSA has in establishing causal relations, and 

compares it to some other standard methods for addressing covariate imbalances.  In the 

third and main section of the paper we present two analyses of the same data set, using 

two different methods for estimating propensity scores, viz., logistic regression and 

classification trees. Various graphical techniques are introduced and discussed, especially 

as they yield insights into the data and contrast the two estimation techniques.  The fourth 

section discusses implementation strategies and available software, especially for the S+ 

and R statistical packages. We conclude with a expanded discussion of issues raised in 

the previous sections.  Throughout we give some indication of the available literature on 

the subject.  Before describing PSA methods, however, it may be useful to consider some 

elements that distinguish experiments from observational studies. 

True experiments, studies in which individuals are randomly assigned to 

treatments, have played a vital role in applied science; they are commonly regarded as the 

best methodology available for answering unambiguously whether treatments have causal 

effects on outcomes.  Still, critics often denigrate experimental studies, particularly when 

treatments seem somewhat artificial, or do not conform to behavioral conventions.  

Indeed, experimental treatment comparisons often differ from their observational 

counterparts, based on matters such as whether participants choose to participate in 

treatments when assigned, how fully they carry out treatment responsibilities, or simply 
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because the experimental implementation of treatments differs in notable ways from its 

observational counterpart.  Often it is observational situations that scientists want most to 

understand, as they provide a better basis for generalizations to real-world situations.  

Further, by choosing whether and how to participate in various treatments subjects can 

have a strong role in how such treatments are even defined.  

In practice surely the most important point is that randomization is ethically or 

administratively unfeasible for comparing many treatments since it is difficult or 

unreasonable in many social and behavioral research settings for an investigator either to 

seek or gain permissions required to assign individuals to treatment groups. Conniffe, 

Gash and O�Connell (2000) note, �Application of the direct experimental approach in the 

economy and society is usually considered unpalatable, or even unethical, even when it 

would clearly provide the ideal comparison� (p. 283).  In general, those who argue in 

favor of experiments based on random assignments weight internal validity more heavily 

than external validity; but even some analysts who most strongly endorse randomization 

concede that observational studies that do not use random assignment are likely to be 

essential (cf. Cook and Payne (2002)).  

 

The Central Ideas of PSA 

PSA generally entails two phases.  First, covariates are selected and used to 

distinguish between two groups; one of these groups is usually called a 'treatment', the 

other a 'control.'  Ideally, covariates at Phase I should distinguish between the two groups 

and have some relationship with the ultimate response variable(s). Based on modeling of 

the probability of being in the treatment group, Phase I analysis yields estimated 
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propensity scores, where (the unobservable) propensity score for an entity or individual is 

defined as the probability of being in the treatment group, conditioned on the covariate 

values for that individual. Typically, estimation of propensity scores has been based on 

logistic regression. However, methods such as classification trees and discriminant 

analysis may also work effectively.   

In Phase II of PSA, individuals are sorted on the basis of their propensity scores 

into a relatively small number of strata. Within each derived stratum, treatment and 

control groups are compared using one or more outcome measures; usually a difference 

in mean response is generated for each stratum, however, medians, trimmed means, and 

various other summary measures may also be compared.  A summary measure of 

treatment effects, a Direct Adjustment Estimator (DAE), can be computed as the average 

of treatment effects across strata. Done effectively, the first phase of PSA yields covariate 

distributions that are similar across treatment and control groups within each stratum; this 

covariate balance is central to effective studies that use propensity scores (Rosenbaum 

and Rubin, 1984).  

Everything depends on whether the available or observed covariates account for 

fundamental differences between treatment and control groups � differences identified as 

selection bias. A PSA based on observational data can in principle serve nearly as well as 

a randomized experiment to infer causal effects.  But practical reality is that observed 

covariates are likely to be at least somewhat inadequate for the task they are being asked 

to do.  Consequently, observational studies, even if analyzed carefully with propensity 

score methods, generally provide at least somewhat weaker evidence than would a 

corresponding experimental study � if the true experiment could be conducted.  To the 
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extent that most of the selection bias can be accounted for, PSA results may support 

causal inferences about treatment effects even when data are observational. This is a key 

argument for trying to find effective approaches to propensity score analyses, to make 

observational study results stronger, more like those of experimental studies.  The use of 

PSA for the analysis of observational data puts a premium on collection of relatively 

comprehensive covariate scores for all respondents based on how effectively to account 

for differences between the treatment and control groups; this issue had rarely been 

understood, much less raised to prominence, before propensity score methodology came 

on the scene. 

Generalizing a result of Cochran (1968), Rosenbaum and Rubin (1983) advise 

that five strata are usually sufficient to remove 90% of the selection bias. When logistic 

regression is used to estimate propensity scores, strata are usually constructed to be of 

equal size.  When strata have differing sizes (as is often the case with propensity scores 

estimated using classification trees) then mean differences for strata are weighted 

according to relative sizes of strata to obtain the DAE.  It often happens, however, that 

effects for treatment comparisons differ across strata.  In this case a summary measure 

such as the DAE may be of less interest than effects for individual strata. A main 

advantage of PSA is that the analyst may be able to investigate how values of particular 

confounders play out for particular strata, and various possible implications for causal 

mechanisms vis-à-vis outcomes.  This point will be elaborated below in the context of 

our example, but in general this issue will require attention of an analyst with subject 

matter and data-specific knowledge.  Of course there are no assumption-free methods for 

inferring causation. 
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As noted, a key goal of PSA is to achieve covariate balance within strata. That is, 

once Phase I has been completed and propensity scores have been used to sort entities 

into subgroups that are relatively homogeneous in these scores, covariate distributions 

should differ only minimally between treatment and control groups within strata.  To the 

extent that covariate distributions are similar on all relevant covariates, the treatment and 

control group comparison will be little affected by selection bias. The central idea for 

PSA is to use covariates first to distinguish the treatment and control groups from one 

another, and then to assess outcome effects within strata that have been defined using 

propensity scores. As will be seen below, graphical methods can help show the extent to 

which this and related objectives have been achieved.  

  

The Role of PSA in Supporting Causal Inferences 

  In the best of situations PSA can be seen as providing support for causal 

inferences in observational studies, support that can be nearly as strong as that of the 

corresponding true experiment, were the latter to be ethical or realistic. But the term 

�support� should not be construed to imply �direct attribution.� Even true experiments 

entail assumptions that when violated can obviate causal inferences.  For example, 

randomization may not have worked as advertised to balance all relevant covariates.  

Stratified random assignment can be an improvement, but one may not have used the 

most appropriate covariates for stratification. Further, the possibilities of interaction can 

never be ignored with impunity. Treatments can have observed effects that misinform 

when notable interactions between treatments and (uncontrolled) independent variables 

are hidden and therefore mask real effects.  It is also possible that treatment or control 
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groups may themselves be poorly defined, or poorly executed, in which case results of 

experiments can mislead or deceive the experimenter. In fact, empirical results generally 

do not warrant direct, assumption-free attributions of causation in virtually any real-life 

scientific study. 

Notwithstanding the difficulties that can arise even in true experiments, it is not 

unreasonable to argue that observational studies can provide support for causal 

inferences.  It is the thesis of many scholars that this support will tend to be strongest in 

situations when propensity scores are used to adjust for selection bias in the comparison 

of treatments, and when certain other conditions are met (as discussed at several places 

on the pages that follow).  In such cases the homogeneously grouped entities in 

propensity-defined strata are formed in a way that makes these subgroups comparable 

with respect to relevant covariates.  When all strata under comparison are very nearly 

comparable with respect to what appear to be all of the most relevant covariates then the 

degree of support for a causal inference in an observational study can closely approach 

that of the experiment that might be envisioned to stand in place of the observational 

study (Rubin, 1997). 

Although PSA is not the only class of methods that has been developed with the 

goal of removing selection bias, it seems to have withstood its challenges better than its 

competitors.  Authors such as Winship and Morgan (1999) discuss these issues in 

considerable detail, with special reference to counterfactual logic that underpins PSA and 

certain other methods.  But it appears that non-PSA methods with similar purposes [esp. 

Instrumental variable methods] are often found to be �frustratingly sensitive to the 

validity of … underlying assumptions (Obenchain and Melfi, 1997).’’  In 
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contrast, PSA results tend to be robust to methodogical variations (cf. 

Conniffe, Gash, & O�Connell (2000)).   

Conventional statistical methods used to adjust for covariate effects, notably the 

analysis of covariance (ANCOVA), are not directed at reducing selection bias but at 

adjusting for covariate imbalance when randomization has been used.  It is generally 

accepted that the key goal of ANCOVA is to improve the efficiency of statistical 

inferences when there are treatment group differences on one or more covariates. While 

ANCOVA has often been used in analyses of observational data, it has been subject to 

serious criticisms in this context, particularly because of its strong assumptions. Most 

importantly, use of ANCOVA generally entails the assumption that there are no 

interactions between treatments and any of the covariates, a criticism that need not apply 

when PSA is used in observational contexts. Furthermore, PSA methods should be seen 

as not only allowing, but in fact encouraging use of as many covariates as seem to be 

needed to make adjustments. In contrast, ANCOVA methods become more and more 

likely to fail as covariates are added to a model. 

PSA, as a vehicle for studying causal claims, can also be contrasted with 

structural equation models (SEMs).  Many authors have contributed to the literature that 

speaks to the issue of inferring causality from association in SEMs and this literature is 

both broad and deep.  Some authors, cf. Spirtes, Glymour and Scheines (1993), argue 

aggressively that causal inferences are feasible with SEMs, and they provide algorithms 

intended to assist toward this end; others, cf. Freedman (1997, 1999), dispute such 

arguments and hold that SEMs provide little basis for causal inferences. Authors such as 

Stone (1993) and Clogg and Haritou (1997) have thoughtfully traced the arguments as to 
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what assumptions are required if causal claims are to be supported in regression analyses, 

but the topic of causation is far too large for even a cursory review here. Pearl (1998, 

2000) is well worth studying by those who aim to understand causality in the context of 

SEMs, but it is notable that SEMs generally do not aim to adjust for selection bias. 

 

A PSA Illustration Based on Real Data 

We present two analyses of a data set from the early 1960�s concerning the 

relationship between maternal smoking during pregnancy and infant birthweight. [Data 

source: http://stat-www.berkeley.edu/users/statlabs/labs.html] The data were excerpted 

from a larger database of all births to women enrolled in the Kaiser health plan in 

California from 1960 to 1967. The original Berkeley Statlabs data set (cf. Nolan and 

Speed, 1999) contained 1237 cases, but some data cleaning, followed by elimination of 

infants who were not born full term, gestations less than 37 or more than 43 weeks, 

reduced the sample to 954 cases, all with complete records.1   

We defined smoking mothers as the treatment group, with the control group 

identified as those mothers who did not smoke during pregnancy.  The outcome measure 

of interest is the weight of the infant at birth.  Confounding variables chosen for this 

analysis included the length of gestation, mother�s height, weight, age, race, education 

level and marital status, as well as the number of her previous pregnancies; also, the age, 

race and education level of the father. Our aim is to provide a demonstration of various 

graphical techniques and discuss their consequences in the context of two different 

                                                
1 Recently, Rubin and colleagues have reexamined PSA in the context of applications where 
some data are missing data, noting that missingness should also be balanced when estimating 
propensity scores.  Interestingly, we note that classification trees handle missingness more easily 
than do parametric methods such as logistic regression, something not pursued by Rubin.  
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approaches to the estimation of propensity scores: logistic regression and classification 

(regression) trees.  We note that the mean birthweight for infants born to mothers who 

smoked during pregnancy was 3255 grams and for nonsmokers, 3509, leading to an 

(unadjusted or raw) difference of 254 grams.  Consequently, the unadjusted estimate of 

the affect of smoking is to lower birthweights by about 9 ounces. 

 

Logistic Regression Results: At the outset, several preliminary logistic models were 

estimated.  Statistically unimportant predictors were eliminated and this led to a main 

effects logistic regression model incorporating the factors gestation, height, weight, 

education and race (Mexican, African American, Asian, mixed or White).  Table 1 

summarizes the results based on the logistic model.  

Using this model, subjects were classified into five strata according to quintiles of 

the estimated propensity score distribution. The following table lists strata, numbers of 

non-smokers and smokers, as well as mean birthweights in grams for each group within 

strata; the final column contains the difference in mean birthweights for strata. 

Because each stratum consists of approximately 20% of the sample, sizes of strata 

are 190 or 191, from the total of 954.  Given the equally sized strata, the average of 

differences across strata equals 219.5 grams, the Direct Adjustment Estimator (DAE).  

These results show that after PSA adjustment for selection bias, using gestation length, 

height, weight, education and race of mother, smokers gave birth to infants who were 

about half a pound lighter than those born to nonsmoking mothers, a slightly smaller 

value than the unadjusted estimate noted above.  For those not familiar with studies of 

neonatal effects, it may be important to note that birthweight is generally regarded as the 
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single best indicator of infant morbidity so that a result like this is useful evidence about 

the effects of maternal smoking. 

A more nuanced analysis is shown in Figure 1 where birthweights are plotted 

against propensity scores; Obenchain (2002) seems to have been the first to have 

suggested this kind of plot, but we have never seen it published before.  Open circles 

correspond to Nonsmokers; filled circles correspond to Smokers.  Separate loess 

regression lines (cf. Cleveland, Grosse and Shyu (1992)) are shown for the groups of 

Smokers and Nonsmokers. These are non-parametric regression curves for the treatment 

and control groups.  Although not computed here, the weighted average difference 

between the two loess lines might be generated as a summary estimate of the effect of 

smoking (DAE), having adjusted for selection bias with this logistic regression model.  

 Note that for most of the left side of this propensity score distribution the distance 

between the Nonsmoker and Smoker regression lines is about the same.  However, at the 

upper levels of propensity scores, just past the middle of the PS distribution, estimated 

birthweights tend to decrease for both groups, where the downward trend is larger for 

Smokers than Nonsmokers.  This leads to interesting questions about the covariate levels 

that, while indicative of a higher propensity to smoke, are also apparently indicative of a 

tendency for smaller birthweights irrespective of smoking status.  The plot also shows 

cutoffs using vertical lines at the quintile points of the PS distribution; these lines 

distinguish strata for which counts and means are given in Table 2.  It is evident that there 

are several Smokers and Nonsmokers in each stratum, but as can be most readily seen in 

Table 2, there are fewer Smokers than Nonsmokers in the left-most stratum and more 
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Smokers than Nonsmokers in the right-most stratum. This kind of imbalance in counts in 

strata is characteristic of propensity score strata constructed using covariates in PSA.   

 That the loess lines lie strictly above and below each other and do not cross is an 

indication of concordance of treatment effect across propensity score levels and thus 

covariate levels.  In some applications the loess lines may cross to indicate values of the 

covariates, and subsets of units, where treatment effects are manifestly more complicated 

than seen here; naturally, details of context would be needed to know how effectively to 

follow up on such results. 

In Figure 2 boxplots are used to compare covariate distributions within propensity 

score strata; however, only one figure is given here, that for gestation.  These five strata 

again correspond to those discussed above for the logistic regression analysis.  The 

boxplots are presented in pairs for the respective strata, where the boxes are colored 

differently for each stratum, for Nonsmokers on the left, Smokers on the right.  The 

endpoints of each box correspond to the first and third quartile points for the 

corresponding distributions; the medians correspond to the horizontal line segments 

within each box.  The so-called box whiskers identify the ends of each distribution, 

unless there are notable outliers, as seen in the second, fourth and fifth strata.  Because 

knowledge of means generally adds to information in the form of medians, the short line 

segments that connect each of the comparable boxplots, for each stratum, are based on 

means of the corresponding distributions.  Detailed examinations of such graphics may 

provide insights about treatment differences as related to covariate distributions. 

 Figure 3 shows a counterpart of Figure 2 where the covariate, education, is an 

ordered categorical variable. Each pair of barplots corresponds to Nonsmokers (left) and 
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Smokers (right) for a particular stratum. Again, the goal of PSA stratification is to 

achieve balance within strata for the covariates, which in the case of a categorical 

variable like education means to learn whether proportions in the respective education 

categories are similar within strata. 

The boxplots and barplots of Figure 2 and 3 provide detailed visual indications of 

covariate balance within strata. If desired, these graphics can be used in conjunction with 

standard numerical tests for independence of the categorical variable and treatment 

variable or difference of means or medians in the continuous case.   

In this example, before stratification on the propensity score, differences between 

Nonsmokers and Smokers were significant, and notable, for several covariates, including 

gestation, mother�s and father�s ages; also, the categorical variables for mother�s and 

father�s education and mother�s race were significantly and strongly related to smoking. 

After stratification on the estimated propensity score, two sample t-tests for comparison 

of means by covariate and strata were conducted for the continuous variables; tests of 

independence within strata of categorical covariates and smoking were also conducted. 

With minor exceptions, Nonsmokers and Smoker distributions were approximately 

balanced for all strata, as there were no significant differences in means or deviations 

from independence. These results were the same whether the propensity scores were 

derived from the logistic model or from the classification tree (see below).   

Note that covariate distributions may reasonably be compared not just for 

covariates used in the logistic regression, but also for covariates that were not part of in 

the logistic model to discriminate between treatment and control groups. Recall that the 

goal in PSA is to form strata for which all generally relevant covariates will be balanced 
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in each stratum, not just the covariates that happen to have been used in Phase I of the 

PSA.  Inspection of the range of all such distributions, comparable to those shown here as 

Figures 2 and 3, shows that balance seems largely to have been achieved in this case.   

Another graphical aid to interpretation of results is apparently novel.  We name it 

the PSA Assessment Plot, seen in Figure 4.  This is an enhanced scatterplot based on 

circles rather than points, each sized so their areas will appear proportional to sizes of 

strata; the coordinates for each stratum are summary measures for control and treatment 

groups respectively, in this case mean birthweights of Nonsmokers on the horizontal axis 

and Smokers on the vertical axis.  In the example based on logistic regression, where 

cutoff points for the strata were based on PS quintiles, all circles have the same size. Note 

that if the means were the same in a stratum for Smokers and Nonsmokers then the 

corresponding circle lies on the identity diagonal, the solid line with intercept zero and a 

slope of unity.  That all circles in Figure 4 lie on the same side of the identity line 

indicates a concordance in direction of effects across strata for these data, echoing that 

indication from the loess lines shown earlier.  The heavy dashed line parallel to the 

identity diagonal corresponds to the weighted mean of effects across the five strata; that 

is, this dashed line shows the DAE. The distribution of effects across strata is shown by 

the crosses in the lower section of the plot, where effects, i.e. differences in means within 

strata, have been projected downward to a line segment perpendicular to the identity 

diagonal.  In addition, the thin horizontal and vertical dashed lines locate the weighted 

means for birthweights by strata for Smokers (horizontal) and Nonsmokers (vertical). 

Each stratum is identified by its number inside the corresponding circle, so graphical 

results seen in Figure 4 can be compared to numerical counterparts in Table 2.  
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Figure 4 makes it apparent that results for strata 2 and 3 are similar; but while 

mean Nonsmoker birthweights for strata 1, 4, and 5 are similar, the same measure for 

Smokers in these strata varies notably.  Though stratum 1, the subset with lowest 

propensity scores, is closest to the identity diagonal, it still shows the same direction of 

effect as the other strata.  Stratum 5 yielded the strongest effect among the strata, a 

finding that recalls the loess plot above where the largest difference between Smokers 

and Nonsmokers was found for the highest propensity scores.  It appears that the 

propensity score assessment plot yields insights that extend beyond those of the basic 

table depicted above; similarly the loess regression plot provides far more information 

than given in the count and mean summary table. 

 

Classification Tree Results:  Next we compare the analysis based on logistically 

estimated propensity scores with an analysis based on a classification tree.  As we discuss 

below, this different estimation strategy here finds a similar DAE, yet yields potential 

insights different from the analysis above using logistically derived propensity scores.  In 

fact, the two different derived propensity score estimates differ notably from one another, 

although each achieves reasonable covariate balance in our example.  

 A tree was used to partition the data set recursively, based on the same covariates 

available initially in the preceding logistic regression analysis.  Figure 5 shows that the 

covariate that best split the Smoker and Nonsmoker groups into two subgroups was 

education, an ordered categorical variable, using the cutpoint 3.5. That is, the variable 

education was selected by the tree algorithm at the first level, where all mothers whose 

education level above the third went to the left-hand branch of the tree, the rest to the 
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right (see the website given above for details about variable codes).  Two groups of size 

429 and 525 respectively were formed initially; in the higher education group 32% were 

smokers, whereas in the lower education group 44% were smokers, a difference of 12%. 

The classification tree algorithm is such that any other partition, using either a different 

covariate or a different cutpoint for education, would have led to a split whose difference 

in proportions would be smaller than 12%.  Recursive partitioning was continued, where 

again the goal was to use a covariate (Education being eligible again) to partition each of 

the education-based subgroups so that the maximum difference between proportions of 

smokers would be found.  In this case the higher education group was split on gestation at 

282.5 days.  The lower education group cut at 32.5 years, based on father�s age; 34% of 

the fathers under this age were found to be smokers, and since this subgroup was not split 

further it is called a terminal node or leaf.  For older fathers, the tree was extended on the 

basis of mother�s race and gestation, as shown in the tree graphic.  

  The final tree in Figure 5 used the covariates age, education, and race of mother, 

as well as age of the father and gestation to partition the full data set.  One of the inherent 

benefits of such a tree is that the strata are determined in a natural manner by the data 

themselves; interactions of covariates with respect to the prediction of a two-category 

criterion are found automatically using a tree.  Strata sizes are unconstrained, and the tree 

algorithm is non-parametric in the sense that the tree is unchanged when quantitative and 

ordered categorical covariates are reexpressed using (order preserving) transformations 

(such as logs or powers).   

The counts for terminal leaves of the tree ranged from a high of 258 (stratum 4) to 

a low of 23 (stratum 4).  Although judgment may be required in deciding how far to grow 
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a tree, there is reason, based on prior experience with logistic regression and the results of 

Rosenbaum and Rubin (1983), to aim for five to seven terminal leaves.  Ultimately, one 

does not want so many leaves that many cells in the strata by treatment table are empty, 

nor so few that considerable selection bias remains.  

Table 3, based on the classification tree, shows counterpart counts and means that 

had earlier been presented in Table 2 for logistic regression.  Propensity scores in the case 

of a classification tree are derived by the Smoker/Nonsmoker counts within strata.  For 

example, in the first stratum 5 of 23 mothers are smokers, yielding a propensity score of 

5/23 = 0.217, where all individuals are assigned the same estimated propensity score in 

each stratum.  Weighting the mean birthweight difference in each stratum by the 

proportion of subjects in that stratum yields a DAE of 206.4 grams. Thus both estimates 

of the direct effect indicate that the unadjusted difference overemphasized the negative 

effect of maternal smoking on birthweight.  

In Figures 6 and 7 we present boxplot and barplot comparisons for these 

classification tree-derived strata to aid comparison with the earlier logistically-derived 

strata.  Recall that gestation was significantly different for the two groups before 

stratification.  Thus Figure 6 shows considerable differences across strata in the 

(conditional) distributions of gestation, but again, balance within strata has been fairly 

well achieved.  Figure 7 generally shows approximate balance for mother�s education 

levels across strata, but the first stratum indicates exceptionality.  The latter result is 

probably not of great importance in this case, however, since the size of this stratum is 

small (23 cases).  The question of whether �sufficient balance� has been achieved remains 

open, as it nearly always will in applications.  But note that even in randomized studies, 
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particularly when samples are not large, at least some covariate distributions are likely to 

become unbalanced by chance. 

 The tree-based PSA assessment plot is shown in Figure 8, where numerical 

summaries in Table 3 can be used in conjunction with this Figure. Again, the assessment 

plot shows a concordance in directions of effects across strata.  Compared to the 

preceding logistic regression results, however, the overall spread of the strata is 

somewhat diminished, with the majority of birthweight means lining up with the mean 

effect across strata.  Stratum 2 shows the smallest treatment effect, while stratum 1, 

which is the smallest, shows the largest effect of smoking. Note that sizes of circles differ 

for strata derived from the classification tree, in contrast with the logistic regression 

illustration above.  In general there may be merit in further examination of the 

distinguishing characteristics of units in a given stratum with respect to the size of the 

treatment effect for that stratum. 

 

Implementation 

In our use of logistic regression in Phase I above, we have chosen not to use the 

fullest model, more for simplicity�s sake than from need.  Since the model is not to be 

used for effect estimation, over-fitting is generally not a serious issue.  It is possible that 

the Phase I estimates of propensity scores are such that there is little overlap in propensity 

score distributions for the treatment and control groups.  Larger samples can help 

ameliorate this problem, but it must be remembered that many observational data sets 

simply cannot provide an empirical basis for answering questions about treatment effects.  

A more parsimonious model in Phase I may sometimes be helpful, provided reasonable 
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covariate balance is maintained.  A similar argument can be used regarding the question 

of how far to grow the classification tree; there need not be much disadvantage to having 

a more elaborate tree except that as more nodes are added it is more likely that counts for 

some leaves will be too small and too imbalanced to permit comparison of the treatment 

and control groups.  The key issues have to do with matching, about which Rubin and 

Thomas (1996) provide especially useful information.  

Statistical methods for both phases of PSA are in general within the main stream 

of statistical software so that conduct of a PSA may require little more than what can be 

found in any comprehensive package.  Authors such as Conniffe, Gash and O�Connell 

(2000) provide relevant discussion of the numerical aspects, including, for example, 

equations showing how to estimate the standard error of a DAE.  

Graphical methods are another matter, however, at least those of the kind 

illustrated in this article.  We are aware of several attempts to develop graphics for PSA 

using a variety of software packages, but it would appear that the most successful ones 

were based on the S language, in particular the S+ and R packages.  We have used R here 

because it is free (website: r-project.org) and has reached a relatively refined stage of 

development that lends itself to graphical displays of data.  Not only are our PSA 

functions available without cost (website to be provided) but there are others as well, 

such as that of Obenchain (2004).  

 

Discussion 

 An example has been used to illustrate propensity score analysis, and especially to 

highlight graphical methods as aids to interpretations.  Several larger points should be 
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made about such propensity studies, and our example affords an opportunity to point up 

some relevant issues.  First, a caveat: the data used for our illustration were archival from 

the 1960s, something to be taken into account in order to avoid unwarranted 

generalizations.  For example, nearly 39% of this sample of pregnant women reported 

that they smoked to some extent during their pregnancies, a significantly larger 

percentage than currently seen in the U.S.   

A deeper question in this and many observational studies has to do with what it 

means to be in the so-called �treatment� and �control� groups.  In this case ancillary data 

were available showing how many cigarettes were smoked prior to, or during pregnancy.  

We made some rather arbitrary choices in our final decisions about whom we would call 

Smokers and Nonsmokers; the only reason for not providing details is the methodological 

emphasis of this article. Another critical issue is whether self-reported data (as smoking 

levels were here) are sufficient to adequately define treatments.  Clearly behavioral 

records would be more satisfactory, but they were not available in this case, and would 

usually not be in our experience.  Similar questions about the measurement properties of 

the measured covariates need also to be considered.  Careful design of observational 

studies is at least as important as careful design in the context of true experiments (cf. 

Rosenbaum, 2001, 2002). 

 It should be recognized that many observational data sets will not provide a sound 

basis for propensity score analysis.  This is particularly true when treatments or control 

groups cannot be clearly defined, when most needed covariates are not available or not 

soundly measured, or when the differences between the groups being compared are 

simply too great to have a basis for comparison.  These points should not be seen as 
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criticisms of PSA itself, however, because lacking the desired data, no statistical methods 

may provide a sound basis for comparing groups, especially to support causal inferences.  

Some methods, especially those based on regression, may appear to �work� when PSA 

may not.  But this may be illusory; PSA is fundamentally self-critical while most other 

methods are not. See Rubin (1997) for a relevant discussion. PSA leads the analyst in 

directions that conventional methods do not because the key problem of observational 

group comparisons, selection bias, is addressed directly and because PSA need not entail 

any assumptions about particular functional relationships among variables. 

Analysis of observational data using propensity scores can clarify, and therefore 

improve interpretations of group comparisons by removing selection bias. To the extent 

that covariates effectively account for important or relevant pre-treatment differences 

between groups (differences in shoe size would probably not be important), comparing 

groups whose propensity scores are similar will often sharpen the focus of comparisons, 

and may help support causal interpretations about treatment effects.  Graphical methods 

were emphasized above as a means to assess key questions, especially that of covariate 

balance.  The foregoing loess plot and corresponding covariate balance plots showed that 

detailed examinations of group differences can help to show where and to what extent 

particular covariate differences exist for specific strata.  Recall that for one stratum, the 

fifth, the fitted lowess lines decreased for both Smoking and Nonsmoking groups, and the 

covariate balance plots showed how gestation differed when comparing this stratum from 

the others.  This example provided strong hints about how particular covariate differences 

could further affect birthweights, irrespective of smoking status. Alternatively, these plots 
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can be seen as indicative of interactions between gestation and effects of smoking on 

birthweights.  

Because one never observes all potentially relevant covariates the question is 

always open, at least to some extent, as to whether treatment effects in PSA reflect 

causality, or simply a failure to include key covariates.  This is where the analyst�s 

subject-matter knowledge comes in, as well as sensitivity analysis when feasible.  

Sensitivity analysis attempts to quantify the hidden bias, or strength of an unknown and 

unobserved confounding variable that would be needed to explain the observed DAE; see 

Rosenbaum (1991, 2002). 

 Both the loess regression plot in the case of logistic regression applications, and 

the PSA assessment plot, which applies for both logistic regression and classification 

trees, provide useful visual images of the size and direction of treatment effects.  In the 

case of the assessment plot, it is clear that if all circles, one for each stratum, lie on the 

same side of the identity diagonal, this lends strength to the conclusion about treatment 

effects.  When circles-as-strata in an assessment plot do not line up parallel to the identity 

diagonal this is prima facie evidence of interactions between covariates and treatments, 

since treatment differences are thus seen to depend on particular combinations of 

covariate score values or categories.  The graphics of PSA may be incisive for the analyst 

in learning what investigative directions may be worth following.  As always, of course, 

care is needed in order not to over-interpret data. 
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Conclusion 

 In the end a great deal depends on details such as how the data were collected, 

how the ostensible treatments were defined, whether at least most of the most desirable 

covariates were measured, and if so with not too much missingness; what outcome 

measures were used, and how effectively to analyze outcomes as well.  Some of these 

and related issues can be usefully illuminated through careful use and interpretation of 

graphical displays. Technical details may matter in the conduct of PSA of course, but it 

has been satisfying to learn that PSA results have often proven robust to many 

methodological variations. Nevertheless, in view of the paucity of PSA studies in the 

psychological and social sciences to date, the situation in these fields is currently not 

clear as to what issues will turn out to be most central in future applications.  Many 

additional references of relevance are available: a tutorial, D�Agostino (1998); details 

about what �choice� means in an observational study, Rosenbaum (1999); an application, 

Perkins, et al (2000); and discussions of broad issues and technical details pertinent to 

many aspects of PSA, Rosenbaum (2002). 
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Tables and Figures 
 

Table 1 
Main effects logistic regression model  
Smoking Predictor       β     SE         t  p(>|t|) 
(Intercept) 3.238 2.575 1.257 .2086 
Gestation −0.023 0.006  −3.448  .0005 *** 
Height 0.077   0.032  2.376  .0175 *   
Weight −0.011   0.004  −2.747  .0060 ** 
Education −0.222   0.050  −4.455  .0000 *** 
Race � White vs:     
  Mexican −1.054   0.487  −2.161  .0307 *   
  African American −0.827   0.187   −0.928   .3535    
  Asian −0.827   0.452   −1.831   .0671   
  Mixed −2.483   1.037   −2.394   .0166 *   
  Unknown −0.282   0.715   −0.394   .6936    

*p<0.05, **p<0.01, ***p<0.001 
 
Table 2 
Count and Mean Summaries Based on Logistic Regression  
  Strata                 Counts                         Means  
Propensity 
Score Range  

  
NonSmokers 

 
Smokers 

  NonSmoker 
Birthweights 

  Smoker  
Birthweights 

 
  Difference 

( .014,0.284]  150   40  3479 3421   58 
( .284,0.356]     122   69  3573 3309 264 
( .356,0.415]     124   66  3569 3319 250 
( .415,0.485]     108   83  3451 3275 176 
( .485,0.946]       80 111  3457 3108 349 
 
 
Table 3 
Propensity scores, counts and means for birthweight using classification tree strata   
Propensity 

Score 
Nonsmoker Smoker Nonsmoker 

Birthweight 
Smoker 

Birthweight 
Difference 

.217   18   5 3548 3175 373 

.228 132 39 3622 3540   82 

.341 118 61 3580 3278 302 

.376 161 97 3382 3170 212 

.432   92 70 3596 3426 170 

.602   64 97 3326 3090 236 
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Figure 1 

Loess Regression of Birthweight on Propensity Score for Smokers and Nonsmokers 
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Figure 2 

Boxplots to compare covariate distribution within strata: Gestation 
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Figure 3 

Barplots to compare categorical distributions across strata: Education  

 
Figure 4 
PSA assessment plot, strata from logistic regression 
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Figure 5 

Classification Tree for Birthweight Data, predicting smoking status 
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Figure 6 

Boxplots to compare covariate distributions within strata: Gestation 

 
Figure 7 

Barplots to compare categorical distributions across strata: Education 
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Figure 8 

PSA assessment plot, strata from classification tree 
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